Empirical optimization of molecular simulation force fields by Bayesian inference
نویسندگان
چکیده
Abstract The demands on the accuracy of force fields for classical molecular dynamics simulations are steadily growing as larger and more complex systems studied over longer times. One way to meet these is hand learning their parameters machines in a systematic (semi)automatic manner. Doing so, we can take full advantage exascale computing, increasing availability experimental data, advances quantum mechanical computations calculation observables from ensembles. Here, discuss illustrate challenges one faces this endeavor explore forward by adapting Bayesian inference ensembles (BioEn) method [Hummer Köfinger, J. Chem. Phys. (2015)] field parameterization. In (BioFF) developed here, optimization problem regularized simplified prior an entropic acting ensemble. latter compensates unavoidable simplifications parameter prior. We determine optimal using iterative predictor–corrector approach, which run simulations, reference ensemble weighted histogram analysis (WHAM), update according BioFF posterior. approach simple polymer model, distance between two labeled sites observable. By systematically resolving issues, instead just reweighting structural ensemble, corrections extend not included reweighting. envision future formalized, systematic, machine-learning effort that incorporates wide range data experiment high-level chemical calculations, takes computing resources. Graphic abstract
منابع مشابه
control of the optical properties of nanoparticles by laser fields
در این پایان نامه، درهمتنیدگی بین یک سیستم نقطه کوانتومی دوگانه(مولکول نقطه کوانتومی) و میدان مورد مطالعه قرار گرفته است. از آنتروپی ون نیومن به عنوان ابزاری برای بررسی درهمتنیدگی بین اتم و میدان استفاده شده و تاثیر پارامترهای مختلف، نظیر تونل زنی(که توسط تغییر ولتاژ ایجاد می شود)، شدت میدان و نسبت دو گسیل خودبخودی بر رفتار درجه درهمتنیدگی سیستم بررسی شده اشت.با تغییر هر یک از این پارامترها، در...
15 صفحه اولBayesian Inference in Cumulative Distribution Fields
One approach for constructing copula functions is by multiplication. Given that products of cumulative distribution functions (CDFs) are also CDFs, an adjustment to this multiplication will result in a copula model, as discussed by Liebscher (J Mult Analysis, 2008). Parameterizing models via products of CDFs has some advantages, both from the copula perspective (e.g., it is well-defined for any...
متن کاملAutomatic parameterization of force fields for liquids by simplex optimization
We demonstrate an automatic method of force field development for molecular simulations. Parameter tuning is taken as an optimization problem in many dimensions. The parameters are automatically adapted to reproduce known experimental data such as the density and the heat of vaporization. Our method is more systematic than guessing parameters and, at the same time saves human labour in paramete...
متن کاملBayesian Inference in Molecular Phylogenetics
"o. ~ ,1:. 200<;. 1--. \\.B~~ ~ ,~ ~~c..("" ." V I P '7\rt~ . :r~ M~l(.$ 4 ~~oV\ "",cJ.f"-1'~~'/ (~~. O. Gaswd) . O'6~ ~"'\v. tp,~ss.,~ I (Jf. b~O~ [49] Swofford, D., Olsen, G.J., Waddell, P.J., and Hillis, D.M. (1996). Phylogenetic inference. In Molecular Systematics (2nd edn) (ed. D. Hillis, C. Moritz, and B. Mable), pp. 438-514. Sinauer, Sutherland, MA. [50] Thorne, J.L., Goldman, N., and Jo...
متن کاملInvestigation of Melting by Molecular Dynamics Simulation
The melting of a 64 ion microcrystal of KCI was studied by means of a molecular dynamics computer simulation. We used a central pair interaction with an inverse power law repulsion. The thermodynamics, kinetic and structural properties such as melting temperature, latent heat, mean square displacement, diffusion constant, radial distribution function and bond angle distribution are calculated. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: European Physical Journal B
سال: 2021
ISSN: ['1434-6036', '1434-6028']
DOI: https://doi.org/10.1140/epjb/s10051-021-00234-4